Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Adv Ther ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722537

RESUMEN

INTRODUCTION: Spinal muscular atrophy (SMA) is a rare, autosomal recessive, neuromuscular disease that leads to progressive muscular weakness and atrophy. Nusinersen, an antisense oligonucleotide, was approved for SMA in China in February 2019. We report interim results from a post-marketing surveillance phase 4 study, PANDA (NCT04419233), that collects data on the safety, efficacy, and pharmacokinetics of nusinersen in children with SMA in routine clinical practice in China. METHODS: Participants enrolled in PANDA will be observed for 2 years following nusinersen treatment initiation. The primary endpoint is the incidence of adverse events (AEs)/serious AEs (SAEs) during the treatment period. Efficacy assessments include World Health Organization (WHO) Motor Milestones assessment, the Hammersmith Infant Neurological Examination (HINE), and ventilation support. Plasma and cerebrospinal fluid (CSF) concentrations of nusinersen are measured at each dose visit. RESULTS: Fifty participants were enrolled as of the January 4, 2023, data cutoff: 10 with infantile-onset (≤ 6 months) and 40 with later-onset (> 6 months) SMA. All 50 participants have received at least one dose of nusinersen; 6 have completed the study. AEs were experienced by 45 (90%) participants and were mostly mild/moderate; no AEs led to nusinersen discontinuation or study withdrawal. Eleven participants experienced SAEs, most commonly pneumonia (n = 9); none were considered related to study treatment. Stability or gain of WHO motor milestone was observed and mean HINE-2 scores improved in both subgroups throughout the study. No serious respiratory events occurred, and no permanent ventilation support was initiated during the study. Pre-dose nusinersen CSF concentrations increased steadily through the loading-dose period, with no accumulation in plasma after multiple doses. CONCLUSION: Nusinersen was generally well tolerated with an acceptable overall safety profile, consistent with the known safety of nusinersen. Efficacy, safety, and nusinersen exposure are consistent with prior observations. These results support continuing PANDA and evaluation of nusinersen in Chinese participants with SMA. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT04419233.

2.
Methods Mol Biol ; 2799: 13-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727900

RESUMEN

N-methyl-D-aspartate (NMDA) receptors are critical for brain function and serve as drug targets for the treatment of neurological and psychiatric disorders. They typically form the tetrameric assembly of GluN1-GluN2 (2A to 2D) subtypes, with their diverse three-dimensional conformations linked with the physiologically relevant function in vivo. Purified proteins of tetrameric assembled NMDA receptors have broad applications in the structural elucidation, hybridoma technology for antibody production, and high-throughput drug screening. However, obtaining sufficient quantity and monodisperse NMDA receptor protein is still technically challenging. Here, we summarize a paradigm for the expression and purification of diverse NMDA receptor subtypes, with detailed descriptions on screening constructs by fluorescence size-exclusion chromatography (FSEC), generation of recombinant baculovirus, expression in the eukaryotic expression system, protein purification by affinity chromatography and size-exclusion chromatography (SEC), biochemical and functional validation assays.


Asunto(s)
Baculoviridae , Cromatografía de Afinidad , Cromatografía en Gel , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/aislamiento & purificación , Receptores de N-Metil-D-Aspartato/química , Animales , Baculoviridae/genética , Cromatografía de Afinidad/métodos , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Expresión Génica , Células Sf9
3.
Front Aging Neurosci ; 16: 1379011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655431

RESUMEN

Background: As a rare neurodegenerative disease, sporadic Creutzfeldt-Jakob disease (sCJD) is poorly understood in the elderly populace. This study aims to enunciate the multidimensional features of sCJD in this group. Methods: A case of probable sCJD was reported in a 90-year-old Chinese man with initial dizziness. Then, available English literature of the elderly sCJD cases (aged 80 years and over) was reviewed and analyzed. Patients (15 cases) were subdivided and compared geographically. Results: In the elderly sCJD cohort, the onset age was 84.9 ± 4.5 years and the median disease duration was 6.8 months, with respiratory infection/failure as the commonest death cause. Various clinical symptoms were identified, with cognitive disorder (86.7%) as the commonest typical symptom and speech impairment (66.7%) as the most atypical one. Restricted hyperintensities were reported in 60.0% cases on DWI, periodic sharp wave complexes in 73.3% cases on electroencephalogram, and cerebral hypoperfusion/hypometabolism in 26.7% cases on molecular imaging. The sensitive cerebrospinal fluid biomarkers were total tau (83.3%), 14-3-3 protein (75.0%), and PrP RT-QuIC (75.0%). Neuropathological profiles in the cerebral cortex revealed vacuolar spongiosis, neuronal loss, gliosis, and aging-related markers, with synaptic deposit as the commonest PrP pattern (60.0%). The polymorphic PRNP analysis at codon 129 was M/M (90.9%), with MM1 and MM2C as the primary molecular phenotypes. Latency to first clinic visit, hyperintense signals on DWI, and disease duration were significantly different between the patient subgroups. Conclusion: The characteristics of sCJD are multidimensional in the elderly, deepening our understanding of the disease and facilitating an earlier recognition and better care for this group.

4.
Mol Ther Nucleic Acids ; 35(2): 102165, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571746

RESUMEN

Duchenne muscular dystrophy (DMD) is the most prevalent herediatry disease in men, characterized by dystrophin deficiency, progressive muscle wasting, cardiac insufficiency, and premature mortality, with no effective therapeutic options. Here, we investigated whether adenine base editing can correct pathological nonsense point mutations leading to premature stop codons in the dystrophin gene. We identified 27 causative nonsense mutations in our DMD patient cohort. Treatment with adenine base editor (ABE) could restore dystrophin expression by direct A-to-G editing of pathological nonsense mutations in cardiomyocytes generated from DMD patient-derived induced pluripotent stem cells. We also generated two humanized mouse models of DMD expressing mutation-bearing exons 23 or 30 of human dystrophin gene. Intramuscular administration of ABE, driven by ubiquitous or muscle-specific promoters could correct these nonsense mutations in vivo, albeit with higher efficiency in exon 30, restoring dystrophin expression in skeletal fibers of humanized DMD mice. Moreover, a single systemic delivery of ABE with human single guide RNA (sgRNA) could induce body-wide dystrophin expression and improve muscle function in rotarod tests of humanized DMD mice. These findings demonstrate that ABE with human sgRNAs can confer therapeutic alleviation of DMD in mice, providing a basis for development of adenine base editing therapies in monogenic diseases.

5.
Brain Pathol ; : e13261, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602336

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.

6.
J Mol Diagn ; 26(5): 364-373, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490302

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Mutación , Neuronas Motoras , Exones/genética , Heterocigoto , Proteína 1 para la Supervivencia de la Neurona Motora/genética
7.
Cell Rep ; 43(3): 113818, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38402586

RESUMEN

Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and ß-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Células Ependimogliales , Femenino , Embarazo , Humanos , Células Ependimogliales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina/metabolismo , Uniones Adherentes/metabolismo , Corteza Cerebral/metabolismo , Neurogénesis , Proteínas Portadoras/metabolismo
9.
J Neurol ; 271(2): 918-928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37848650

RESUMEN

BACKGROUND: Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE: To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS: This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS: Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS: Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).


Asunto(s)
Disfunción Cognitiva , Enfermedad de Machado-Joseph , Humanos , Cerebelo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Estudios Transversales , Enfermedad de Machado-Joseph/complicaciones , Enfermedad de Machado-Joseph/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos
10.
Mov Disord ; 39(1): 152-163, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014483

RESUMEN

BACKGROUND: Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES: The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS: Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS: Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS: Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Paraplejía Espástica Hereditaria , Pez Cebra , Animales , Humanos , Ubiquinona/genética , Paraplejía Espástica Hereditaria/genética , Mutación/genética , Mutación Missense , Proteínas Mitocondriales/genética
12.
J Genet Genomics ; 51(2): 184-196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159879

RESUMEN

CGG repeat expansions in LOC642361/NUTM2B-AS1 have recently been identified as a cause of oculopharyngeal myopathy with leukoencephalopathy. However, since only three patients from a single family were reported, it remains unknown whether their clinicopathological features are typical for CGG repeat expansions in LOC642361/NUTM2B-AS1. Here, using repeat-primed-polymerase chain reaction and long-read sequencing, we identify 12 individuals from 3 unrelated families with CGG repeat expansions in LOC642361/NUTM2B-AS1, typically presenting with oculopharyngodistal myopathy. The CGG repeat expansions range from 161 to 669 repeat units. Most of the patients present with ptosis, restricted eye movements, dysphagia, dysarthria, and diffuse limb muscle weakness. Only one patient shows T2-weighted hyperintensity in the cerebellar white matter surrounding the deep cerebellar nuclei on brain magnetic resonance imaging. Muscle biopsies from three patients show a myopathic pattern and rimmed vacuoles. Analyses of muscle biopsies suggest that CGG repeat expansions in LOC642361/NUTM2B-AS1 may deleteriously affect aggrephagic capacity, suggesting that RNA toxicity and mitochondrial dysfunction may contribute to pathogenesis. Our study thus expands the phenotypic spectrum for the CGG repeat expansion of LOC642361/NUTM2B-AS1 and indicates that this genetic variant typically manifests as oculopharyngodistal myopathy with chronic myopathic changes with rimmed vacuoles and filamentous intranuclear inclusions in muscle fibers.


Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Humanos , Debilidad Muscular , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Distrofias Musculares/genética , Distrofias Musculares/patología
14.
Mov Disord ; 38(9): 1750-1755, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394769

RESUMEN

OBJECTIVES: To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS: Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS: A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS: We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/diagnóstico , Espastina/genética , Adenosina Trifosfatasas/genética , Fenotipo , Intrones/genética , Mutación
15.
Mol Neurodegener ; 18(1): 47, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438762

RESUMEN

BACKGROUND: Nuclear acetyl-CoA pools govern histone acetylation that controls synaptic plasticity and contributes to cognitive deterioration in patients with Alzheimer's disease (AD). Nuclear acetyl-CoA pools are generated partially from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). However, the underlying mechanism of histone acetylation dysregulation in AD remains poorly understood. METHODS: We detected ACSS2 expression and histone acetylation levels in the brains of AD patients and 5 × FAD mice. When we altered ACSS2 expression by injecting adeno-associated virus into the dorsal hippocampus of 5 × FAD mice and replenished ACSS2 substrate (acetate), we observed changes in cognitive function by Morris water maze. We next performed RNA-seq, ChIP-qPCR, and electrophysiology to study molecular mechanism underlying ACSS2-mediated spatial learning and memory in 5 × FAD mice. RESULTS: We reported that ACSS2 expression and histone acetylation (H3K9, H4K12) were reduced in the hippocampus and prefrontal cortex of 5 × FAD mice. Reduced ACSS2 levels were also observed in the temporal cortex of AD patients. 5 × FAD mice exhibited a low enrichment of acetylated histones on the promoters of NMDARs and AMPARs, together with impaired basal and activity-dependent synaptic plasticity, all of which were rescued by ACSS2 upregulation. Moreover, acetate replenishment enhanced ac-H3K9 and ac-H4K12 in 5 × FAD mice, leading to an increase of NMDARs and AMPARs and a restoration of synaptic plasticity and cognitive function in an ACSS2-dependent manner. CONCLUSION: ACSS2 is a key molecular switch of cognitive impairment and that targeting ACSS2 or acetate administration may serve as a novel therapeutic strategy for the treatment of intermediate or advanced AD. Nuclear acetyl-CoA pools are generated partly from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). Model depicts that ACSS2 expression is downregulated in the brains of 5×FAD model mice and AD patients. Of note, ACSS2 downregulation mediates a reduction in ionotropic glutamate receptor expression through histone acetylation, which exacerbates synaptic plasticity impairment in AD. These deficits can be rescued by ACSS2 upregulation or acetate supplementation (GTA, an FDA-approved food additive), which may serve as a promising therapeutic strategy for AD treatment.


Asunto(s)
Acetato CoA Ligasa , Enfermedad de Alzheimer , Histonas , Animales , Ratones , Acetilcoenzima A , Acetilación , Cognición , Modelos Animales de Enfermedad
18.
Funct Integr Genomics ; 23(1): 56, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737507

RESUMEN

OBJECTIVE: The aim of this study is to investigate the effect of let-7c-5p on the malignant behaviors of hepatocellular carcinoma (HCC) and its specific molecular pathway. METHODS: Differential expression and survival analysis of let-7c-5p were obtained from The Cancer Genome Atlas database, and then its expression level was preliminarily verified through qPCR. The effect of let-7c-5p on the malignant phenotype of HCC cells was subsequently evaluated using CCK-8, transwell, wound healing, and flow cytometry assays. Downstream mRNA regulated by let-7c-5p was identified and confirmed by ENCORI database, dual-luciferase reporter, and western blot assays. The immunocorrelation of genes was evaluated by Xiantao tool, and TIMER and TISIDB databases. RESULTS: The expression level of let-7c-5p in HCC was obviously reduced, which was found to be closely associated with the short survival time of HCC patients. Cell phenotypic experiments showed that let-7c-5p inhibited proliferation, invasion, and migration and promoted apoptosis of HCC cells. Dual-luciferase reporter and western blot analysis demonstrated that CDCA8 is a downstream mRNA of let-7c-5p and is negatively regulated by it. Rescue experiment revealed that CDCA8 reversed the effect of let-7c-5p on the malignant phenotype of HCC cells. Furthermore, analysis of the public database revealed that CDCA8 is related to some immune cells and immunomodulators, and that it may participate in the regulation of some immune pathways and immune functions. CONCLUSION: Let-7c-5p has been proved to suppress HCC by down-regulating immune-related CDCA8, which will help understand the pathogenesis of HCC and develop drugs for its treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
19.
Scand J Gastroenterol ; 58(6): 643-648, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36644950

RESUMEN

BACKGROUND: High serum CA19-9 is usually caused by pancreaticobiliary malignancies, but it has also been found in a tiny minority of calculous cholecystitis patients. AIMS: To clarify the relationship between calculous cholecystitis and serum CA19-9. METHODS: Clinical data of calculous cholecystitis patients with high serum CA19-9 (high group, n = 20) and normal serum CA19-9 (normal group, n = 40) who underwent cholecystectomy were analyzed. Serum CA19-9 of high group were followed-up and gallbladder specimens were analyzed by immunohistochemistry. RESULTS: Serum CA19-9 in the high group ranged from 105 to 1635 U/ml, of which 30% exceeded 1000 U/ml. Follow-up results showed that 20 patient's serum CA19-9 returned to normal after cholecystectomy, including 4 closely followed-up patients whose serum CA19-9 recovered within one month. Immunohistochemical results revealed that CA19-9 was mildly positive only in mucosal epithelial cells in the normal group, but positive in mucosal epithelial cells, vascular endothelial cells, and intercellular substances in the high group, accounting for high serum CA19-9. CONCLUSION: Serum CA19-9 is proved to be associated with calculous cholecystitis for the first time, so that clinicians should consider calculous cholecystitis associated CA19-9 elevation in the clinic practice besides other CA19-9 related diseases.


Asunto(s)
Antígeno CA-19-9 , Colecistectomía , Colecistitis , Humanos , Colecistitis/cirugía , Antígeno CA-19-9/sangre , Biomarcadores de Tumor , Resultado del Tratamiento , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Vesícula Biliar/patología
20.
Parkinsonism Relat Disord ; 106: 105236, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529111

RESUMEN

OBJECTIVE: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia globally. No effective treatment is currently available for SCA3. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive form of brain stimulation, demonstrated to improve symptoms in patients with neurodegenerative cerebellar ataxias. The present study investigated whether treatment with rTMS over the cerebellum for 15 consecutive days improved measures of ataxia in SCA3 patients. METHODS: A double-blind, prospective, randomized, sham-controlled trial was carried out on 44 SCA3 patients. Participants were randomly assigned to two groups: real or sham stimulation. Each participant underwent 30 minutes of 1Hz rTMS stimulation (a total of 900 pulses) for 15 consecutive days. The primary outcome measure was the score on the International Cooperative Ataxia Rating Scale (ICARS), and secondary outcomes were from the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). RESULTS: Nausea was the only adverse effect reported by 2 participants from the sham and real group. After 15 days of treatment, there was a significant improvement in all performance scores in both real and sham stimulation groups. However, compared to the sham group, the improvements were significantly larger in the real group for the ICARS (P = 0.002), SARA (P = 0.001), and BBS (P = 0.001). INTERPRETATION: A 15 days treatment with rTMS over the cerebellum improves the symptoms of ataxia in SCA3 patients. Our results suggest that rTMS is a promising tool for future rehabilitative approaches in SCA3.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/terapia , Estimulación Magnética Transcraneal/métodos , Estudios Prospectivos , Ataxia , Resultado del Tratamiento , Método Doble Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...